What Went Wrong: Explaining Counterexamples

نویسندگان

  • Alex Groce
  • Willem Visser
چکیده

One of the chief advantages of model checking is the production of counterexamples demonstrating that a system does not satisfy a specification. However, it may require a great deal of human effort to extract the essence of an error from even a detailed source-level trace of a failing run. We use an automated method for finding multiple versions of an error (and similar executions that do not produce an error), and analyze these executions to produce a more succinct description of the key elements of the error. The description produced includes identification of portions of the source code crucial to distinguishing failing and succeeding runs, differences in invariants between failing and nonfailing runs, and information on the necessary changes in scheduling and environmental actions needed to cause successful runs to fail.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identifying and Characterizing Class Clusters to Explain Learning Performance

We stress that the field of machine learning would benefit significantly if more work were focused on explaining learning behavior by attending to the connection between learning strategies and the different types of example distributions. The goal of this paper is to exemplify the benefits of such kind of studies through a simple decomposition of classes into clusters. We show how the decompos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003